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ERRORS OF QUADRATURE
CONNECTED WITH THE SIMPLE LAYER MODEL OF THE GEOPOTENTIAL

Karl-Rudolf Koch
Geodetic Research and Development Laboratory, 
National Ocean Survey, NOAA, Rockville, Md.

ABSTRACT. _When using the simple layer model of the geo­
potential in satellite geodesy, one has to integrate 
over surface elements of the earth on which the density 
of the layer.is assumed constant. The integration is 
solved numerically by subdividing the elements and by 
assuming constant kernels of the integrals for the sub­
divisions. This quadrature causes errors that are in­
vestigated for a sphere with the mean earth radius. By 
assuming unit density for the surface layer, exact val­
ues of the gravitational potential of the sphere and 
its gradient can be computed and compared with the val­
ues obtained by quadrature. Different sizes of surface 
elements and different methods of subdivisions are in­
vestigated. The error of quadrature, of course, in­
creases with size of the surface elements and decreases 
with the number of subdivisions. An efficient and 
accurate way of subdividing is the method presently 
applied in the analysis of satellite data.

1. INTRODUCTION

If the simple layer model of the geopotential is applied 
in satellite geodesy, the earth's gravitational potential is 
divided into a known part, represented by an expansion in spher­
ical harmonics of finite degree, and into an unknown part, T, 
to be determined by satellite observations. The potential T is 
represented by the potential of a simple layer distributed over 
the surface of the earth. The unknown density of the layer is a

^Now with the University of Bonn, Germany



2
function of the position at the earth’s surface. For simple nu­
merical evaluation, constant density is assumed for the surface 
elements into which the surface of the earth is divided. Hence, 
we obtain

k
T = E x,- // dE (1)i=1 AE. i 1

(Koch and Morrison 1970, Morrison 1971b) where k is the number of 
the distancesurface elements AE^; X^> the density of AE^; and Si, 

between the fixed point and the moving point.

The integral over the surface element AE^ is solved numer­
ically, so errors of quadrature arise. These errors are investi­
gated here; Morrison (1971a) investigated their influence on sat­
ellite orbits.

2. DIVISION INTO SURFACE ELEMENTS
To define the surface of the earth, one may use an ellipsoid 

of revolution whose shape approximates that of the earth. The 
surface elements for the ellipsoid are formed by means of the me­
ridians L = const and the parallels B = const, B and L being the 
geographic latitude and longitude. To obtain surface elements of 
nearly equal size, one applies the following method. If s (e.g., 
s° = 20°) is the chosen side length in latitude for the surface 
elements, the surface of the ellipsoid is devided into strips 
bordered by the parallels B = 90° and B = 90° - s°, B = 90° - s° 
and B = 90° - 2s°, and so on, provided 180°/s° is an integer.
The area of the strip, which includes the Equator or is bordered 
by the Equator, is computed and divided by 360°/s°. Thus, the 
area of a block of 5° x 5° at the Equator is obtained. The 
areas of the strips are then divided by the area of the block at 
the Equator; the result is rounded to the nearest integer de­
noted by jg. Each strip is then divided by the meridians L = 0°,
L = 3 6 0°/j D, L = 2(360°/j„), and so on, to obtain the surface 
elements AE^’ at the surface of the ellipsoid. The
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elements AE^' are triangular shaped at the poles and rectangular 
elsewhere.

The area of a surface element AE^' on the ellipsoid is com­
puted by

Bi+1 Li+1
AE. ' / / MN cosB dB dL1 B. L.i l

Bi + 1
cosB dB(L.,, - L.) b2 /11 1 Bi (l-e2sin2B)2

where M and N are the radii of curvature of the meridian and the 
parallel; B^, B^ + ^, L ^, and L^ + 1? the latitudes and longitudes of 
the two parallels and meridians that border AE^' ; and where b is 
the semiminor axis of the ellipsoid, and e is its eccentricity. 
The integral over B can be solved by substituting e sinB = sin \p. 
We obtain Bi + 1

V sinB , 1 1 + e sinBAE. ' + TT— In =----- .-sr . (2)l (Li+l - 7 2e 1-e sinBl-e2sin2B
B. x

The surface of the reference ellipsoid does not coincide 
with the surface of the earth; thus area AE^' must be corrected. 
If H denotes the height of the earth's surface (consisting of the 
geoid undulation plus the topographic height) above the reference 
ellipsoid, the area of the earth's surface element AE^ is com­
puted from AE^' by

Bi+1 Li+1
AE / (M+H)(N+H) cosB dB dL

B. L.l
* (1 + ^ + — ) AE.' (3)R R2 1

where H is assumed constant over AE^' and R denotes the mean 
radius of the earth.
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If a spherical surface is used instead of an ellipsoidal 
reference surface, we obtain

B •AE. ' = (L.., - L.) R2 [sinB]p.1 + 1 (4)
1 1 + 1 l

instead of eq (2).

3. SUBDIVISION OF THE SURFACE ELEMENTS

The integral over the surface element AE^ in eq (1) is 
solved numerically by subdividing AE^ into n2 elements 
AE. (m = 1, 2, ..., n2) and replacing the distance l by A. 
computed between the fixed point and the midpoint M^m of AE^. 
We thus obtain

AE.
// dE im (5

i
E )£.AE. m=l iml

This quadrature causes errors dependent upon the size of the 
surface elements AE^, the number n2 of subdivisions AE^, and the 
definition of the midpoint Mim of AEim. To decrease the influence 
of the errors of quadrature in the analysis of satellite data, 
one sets the preliminary density values equal to zero so that 
the errors of quadrature enter only the variational equations 
for the parameter-sensitivity matrix and not the trajectory 
equations (Koch and Witte 1971).

In the application of the surface-layer model of the geo­
potential by Koch and Morrison (1970) and Koch and Witte (1971), 
the following method of subdividing the surface elements and 
defining the midpoints of the subdivisions was used. This method,
which also forms the subdivisions AE. by par rallels and meridians,im 
shall be called method A. If AB. and AL. are the differences inl l
latitude and longitude between the parallels and meridians that
border the surface element AE., the differences AB. and AL. ini xm im
latitude and longitude between the parallels and meridians that
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border the subdivisions AE^ are found simply by

AB. AB. /n lm 1
and (6)

AL. AL./n . lm 1
The differences AB^ and AL^ between the latitude and longitude of 
the midpoint of AE^m and the borders are given by

AB. AB. / 2 M lm
and (7)

AL AL - / 2 M xm

Although the division of the surface of the earth into the 
elements AEi provides approximately equal areas for AE., the 
subdivision according to method A does not lead to equal areas 
for the elements AEim. Given an element AE^ subdivided into 
AEim’ the elements AEim closer to the poles are smaller than the 
ones farther away. The differences between the areas of AE. 
reach a maximum for the triangular elements AE^ containing one of 
the poles. Also, the meridian and the parallel through the mid­
point Mim of AEim do not divide AE^m into equal areas. Thus, the 
areas closer to the pole are smaller than the ones farther away.

Since a uniform division of the surface of the earth
promises to give the best results for the quadrature, a subdivision
called method B is tried; this method uses equal areas for the
subdivisions AE. and places the midpoint M. of AE. in such a 

. _ . . im lmway that the meridian and parallel through M. divides AE. into 
ir im imfour equal areas. The difference ALim in longitude between two
meridians bordering AEim and the difference AL^ in longitude
between the midpoint M.m of AE-m and the meridians bordering
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AE. again are found as in eq (6) and (7) by
-i m °

AL. = AL./n un l
and (8)

AL.im / 2 .

The difference AB. in lafifude between two parallels bordering
AE. , however, is determined in such a way that lm

(9)AE.un

Likewise, the difference AB^ in latitude between the midpoint
M. of AE. and the parallels bordering AE. is found by the lm im
parallel through , dividing AEim into equal areas. If Bi and
Bi+1 now denote latitude of the parallels bordering
then (from eq 4, Rapp 1971) for a spherical surface we obtain

A L • R 2
AE. = —--- (sinB. , - sinB.) (10)

xm n i+l 1

where AE.lsinB . ,, = sinB. +
nAL. R‘l

from which we find

AB. = B.+1 B. (11)im x + 1 l

and, correspondingly, ABj^. Eor an ellipsoidal surface, eq (2) 
must be applied. However, a closed formula like (10) cannot 
be derived for an ellipsoidal surface; sinB^+1 must be computed 
by successive approximation.

4. SPHERICAL MODEL

For obtaining a simple computation of the errors of 
quadrature, a spherical surface of the earth with R - 6368 km 
is assumed. The sphere is covered by a simple layer of unit
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density so that the potential T is obtained from eq (1) and (5) 
by

k n2 AE.
T = l l (12)

i=l m=l im

with
1/2

= [( x - Xp) <yM - yF> + Cz " ZF) (13)lm M M
where x, y, and z are the coordinates of an earth-centered co­
ordinate system in which the z axis points toward the North 
Pole and the x axis toward the intersection of the Greenwich 
Meridian with the Equator. The index F denotes the fixed point,
and M denotes the midpoint of AE. .im

The mass of a sphere covered with a simple layer of constant 
density may be concentrated at the center of the sphere so that, 
in case of unit density, the potential T can be computed from

______ 4ttR2T (14)
Cx2 + Yp +

Methods A and B are now applied to form the subdivisions AE. ;im
thus, potential T and its gradient can be obtained from 
eq (12). By comparing the results with eq (14), the errors of 
the quadrature are obtained.

5. RESULTS

The way of forming the surface elements AEp provides 
symmetry with respect to the Equator and to the meridian L = 0° 
and L = 180°. Hence, only fixed points with 90°>Bp>0° and 
180°>Lp>0° have to be considered. The coordinates Bp and Lp 
of 26 fixed points are selected at random with heights of 
Hp = 800 km and Hp = 1000 km above the surface of the sphere 
with the mean earth radius R = 6368 km. For these fixed points, 
one computes the derivatives 8T/3z from eq (12) and compares them 
with eq (14) to compute the relative errors given in units of
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10 3 in tables 1 through 9. The z component of grad T has been 
selected since it is defined above the North Pole or South Pole 
where the maximum errors of quadrature are found. The results 
are computed with s° = 20° and s° = 15° for AE^. A side length 
of 20° for AE. has been used by Koch and Witte (1971); a side 
length of 15° will be applied in a forthcoming analysis of sat­
ellite data.

Tables 1 to 3 show the relative errors of 3T/3z with 
Hp = 1000 km and s° = 20° for AE^ subdivided by method A with 
n2 = 1 in table 1, n2 = 4 in table 2, and n2 = 9 in table 3.
The values demonstrate the increase of accuracy with the in­
crease of the number of subdivisions AE^. Although there is 
considerable gain with the change from one to four subdivisions, 
the gain is less from four to nine subdivisions. Tables 4 and 5 
confirm this fact. Hence, good accuracy with little computational 
effort is obtained with four subdivisions AEpm.

Tables 4 and 5 show the relative errors of quadrature with
Hp = 1000 km and s° = 20° for AE^ subdivided by method B with
n2 = 4 and n2 = 9. When comparing these results with tables 2
and 3, one cannot readily judge whether the subdivision by
method A or B gives better results. The same is true for the
comparison between tables 6 and 8 and between 7 and 9. However,
the relative error of method A for the fixed points above the
pole is almost half the error of method B; therefore, method A
is preferred. These smaller errors result because subdivisions
AE. at the pole are smaller with method A than with B. lm

In tables 6 through 9, relative errors are given with 
s° = 15° for AEp subdivided by methods A and B. Comparisons of 
tables 2 and 6 and 4 and 8 show the increase of accuracy gained 
by use of smaller surface elements AE^. Tables 6 and 7 and 8 and 
9 give the relative errors when heights of 1000 and 800 km are 
used for the fixed point Hp above the surface of the sphere.. 
Although the height is only reduced by one-fifth when 800 km is 
used instead of 1000, the errors more than double at some fixed
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points.

Since the error for a fixed point above the pole consider­
ably exceeds that of any other fixed point, especially when 
method B is used, method A was applied to subdivide AE. with 
s° = 15° into nine subdivisions at the poles and into four 
subdivisions elsewhere. The results are given in table 10.
While the accuracy increased at the pole, the results did not 
change for fixed points toward the Equator (cf. table 8). There­
fore, the subdivisions of the surface element below the fixed 
point contribute mainly to the error of quadrature. This suggests 
using a scheme in which the subdivisions are varied for different 
positions of the fixed point (e.g., n2 = 9 for the surface 
element below the fixed point, n2 = 4 for the surrounding el­
ements, and n2 = 1 for the remainder).

Method A of subdividing the elements AE. gives negative 
errors of quadrature for fixed points above and close to the pole 
while method B leads to positive errors in that region. There­
fore, an attempt was made to combine both methods by subdividing 
the elements AE^ according to method A but defining the midpoints 
as in B. The results given in table 11 indicate that the combina­
tion method is not successful. The relative errors for fixed 
points close to the pole considerably exceed those of tables 6 
and 8.

6. CONCLUSIONS

The relative errors of quadrature for the z component of 
grad T presented in tables 1 through 11 are obtained after 
summing the contribution of each surface element AE^. One may 
assume from the results of table 10 that the quadrature error for 
the surface element closest to the fixed point is the main con­
tributor to the error given in the tables. Thus, the errors from 
the individual elements AE^ for the three components of grad T 
will not surpass the maximum error of the tables found for the 
fixed points above the pole where the z component only is defined. 
The contribution of each individual element AE^ to the three
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components of grad T, however, enters the variational equations 
(Witte 1971). The relative errors of these contributions will 
generally be less than 1 percent and always less than 4 percent 
for satellites with perigees between 800 and 1000 km and for 
surface elements AE^ (with s° = 15°) divided into four subdivisions 
by method A. The corresponding values for elements of 20° 
sidelength are 6 percent and 3 percent. This accuracy is suf­
ficient for the variational equations.
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Table 1. — Relative errors of quadrature Cin units of TO ) for 
method A, s° = 20°, n2 = 1, and H^, = 1000 km

bf 0° ooCO 100° 130° 180°

90° -70.9

00 o o 34.4 -87.5 CO•o<N1 20.8 -280.0

70°
50°

0o

107.0
100. Q
54.4

72.6
8 5. 8
1.9

69.5
87.6.
33.2

91.0
95.. 6
49.8

28.6
94.2
56.6

oo1—
1 102.0 28.7 2 Q 3.0 -1Q8.0 282.0

of 10 3) forTable 2. — Relative errors of quadrature (in units
method A, s° = 20°, n2 = 4, Hf = 1000 km

lf

bf 0° 30° 100° 130° 180°
OoCD -44.9

00 O 0 10.4 11.9 -6.1 5.0 10.4

70° 24.2 15.3 -3.2 14.8 24.2
50° 11.3 2.5 10.2 4.3 11.3

oo1—
1

40° 11.6

10.1

4.2

13.0

7.5

21.6

1Q.6

17.0

11.6

10.1
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Table 3. -- Relative errors of quadrature (in units of 10 3) for
method A, s° = 20°, n2 = 9, Hf = 1000 km

lf

bf

ooCD

0°

LO001—
1

1

0oCO 100° 130° 180°

OO00 -2.2 -3.4 -4.6 -3.4 CD-It1

OOr- 6.8 Q. 5 -6 . 2 -Q.5 -6.2

cn o o 1.7 0.9 0.3 1. Q 0.4

oo 0.7 -Q. 2 0.0 0.5 0.7
10° 1.3 0.4 1.4 0.7 1.9

Table of 10 3) for4. -- Relative errors of quadrature (in units
method B, s° = 20°, n2 = 4, Hp = 1000 km

lf

bf 0° 30° 100° 130° 180°
90° 75. 5

oo00 14.5 11.5 -4.8 8.2 14.5

oo[-» 34.8 19.7 -2 . 3 23.4 34.8
50° 5.9 -5.2 5.0 -3.7 5.9
40° 13.3 6.7 9.6 12.5 13.3
10° 1.2 4.1 12.7 8.1 1.2
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of 10 3) forTable 5. -- Relative errors of quadrature (in units
method B, s° = 20°, n2 = 9, HF = 1000 km

bf 0° 30° 100° 130° 180°

C
O o o 43.4

00 o o 2 . 9 1.8 C
Oo 1.8 0.6

0o[>- 8 . 8 1.6 -6.2 1.6 -6.2

50° -1.6 -2.4 i—
1

C
O1 -2 . 3 1 C

O o
ooIt

oo -1.0 -0.7 C
Oo
1 0.5

10° -3.0 CDC
O1

00CN1 -3.6 -2.4

of 10 3) for(in unitsTable 6. -- Relative errors of quadrature 
1000 kmmethod A, sp - 15° , n2 = 4, H? =

lf

bf 0° Oo00 100° 130° 180°
o

o
o

o
o

o
90°

CO
r-*

It

50°

-24.4
3 . 8
2.6
0.9
2.2

LOCO1—
1

1

-2. 6
-1.9
1.8 CO•o

-9.0
-0.3
-1.2

-0.4
0 . 3
0.2
1.2

3.8
2.6
0.9
2.2

oo1—
1 5.8 6.1 4.8 4.6 COLO
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Table 7. -- Relative errors of 10“3) forof quadrature (in units
method A, s° = 15°, n2 = 4, Hf = 8 00 km

bf 0° 30° 100° 130° 180°
90° -37.9

00 o o 15.0 rHO001 00O'1—
1

1 4.7 15.0

o o 4.9 -4.8 1.4 -1.1 4.9
50° 1.7 -9.3 -6.6 -1.0 1.7
40° 6.1 4.7 0.1 2.4 6.1
10° 18.6 19.3 15.9 15.6 18.6

of 10~3) for'Table 8. -- Relative errors of quadrature (in units
method B, s° = 15°, n2 = 4, Hp = 1000 km

lf ■
0oCD

bf 0°

39.9

30° 100° 130° 180°

OO00 17.2 2.0 5.9 13.5 17.2
70° -1.6 -9.6 -6.3 -4. 6 -1.6
50° 2.0 -0.6 0.0 1.4 2.0

0o -1.5 -1.9 -3.3 -2.6 -1.5

H o 0 3.2 3.5 2.1 2.0 3.2
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of 10 3) forTable 9. -- Relative errors of quadrature (in units
method B, s° = 15°, n2 = 4, Hp = 8 00 km

BF 0° 30° 100° 130° 180°

90° 62.9

80° 28.1 -8.7 • 1.1 19.5 28.1

70° -5.1 l—
1

o041 -11.3 i H CO • -P -5.1

50° 6.0 -4.0 -1.5 3.5 6.0

ooZt- 0.7 -0.9 -5.9 -3.3 0.7

10° 15.8 16.6 13.1 12.8 15.8

of 10 3) forTable 10. -- Relative errors of quadrature (in units 
method B, s° = 15°, n =4, for polar triangles
n =9, Hp=1000km

bf 0° 30°
F

100° 130° 180°

90° 25.9

CO o o 13.2 12.4 11.6 12.4 11.6

oo -4.4 -6.5 -5.5 -6.5 -5.5

50° 2.1 -0.6 0.0 1.4 2.1

40° -1.5 -1.9 -3.3 -2.6 -1.5

10° 3.2 3.5 2.1 2.0 3.2
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Table 11. -- Relative errors of quadrature (in units of 10 for
the combination of methods A and B, s° r L OI —I O

1  

n = 4, and Hp = 1000 km

lf

bf 0° 30° 100° 130° 180°
90° 108.0

OoC
O 44.8 26.2 31.0 40.4 44.8

oo 6.1 -4.8 -0.9 2.4 6.1

ooLO -5.5 -8.3 -7.6 -6.2 -5.5
40° -4.9 -5 . 3 -6.6 -5.9 -4.9

Oo1—
1 -0. 6 -0.3 -1.7 -1.8 -0.6
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